Solving Quadratic Equations

Quadratic Equation: An equation that can be put in the form $ax^2 + bx + c = 0$. This is called the *standard form* of a quadratic equation.

Three methods to solve:

1. **Solve by factoring**
 a. Write in standard form
 b. Factor
 c. Set factors = 0
 d. Solve results.
 e. Check.

 Example: $x^2 + 8x = -15$
 - Write in standard form: $x^2 + 8x + 15 = 0$
 - Factor: $(x + 5)(x + 3) = 0$
 - Set factors = 0: $x + 5 = 0 \quad x + 3 = 0$
 - Solve results: $x = -5 \quad x = -3$
 - Check. Do it!!

2. **Solve by Completing the square**

 Example: $2x^2 - 12x = 8x - 38$
 - If already in $(something)^2 = number$, go to step f. Otherwise write with variables on left, number on right.
 - $(2x^2 - 20x = -38)$
 - If the coefficient of x^2 is one, go to step c. Otherwise divide both sides of the equation by the coefficient of x^2
 - Divide the x coefficient by 2 (and get 5 in our case), and square it. $5^2 = 25$. Add the result to both sides.
 - Divide by 2: $x^2 - 10x = -19$
 - Add 25 to both sides: $x^2 - 10x + 25 = -19 + 25$
 - Factor the left side (which will always be a perfect square)
 - Factor the left side: $(x - 5)^2 = 6$
 - Apply the square root property to the equation.
 - $\sqrt{(x - 5)^2} = \pm\sqrt{6}$
 - Simplify and solve
 - $x - 5 = \pm\sqrt{6}$
 - So $x = 5 \pm \sqrt{6}$
 - Or you can write
 - $x = 5 + \sqrt{6}$ or $x = 5 - \sqrt{6}$
 - CHECK!
3. Solve using the **quadratic formula**: \(2x^2 + 14x = 22x - 3 \)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Write in standard form (ax^2 + bx + c = 0)</td>
<td>(2x^2 - 8x + 3 = 0)</td>
</tr>
<tr>
<td>b. Divide out common numerical factors</td>
<td>no common factors this time</td>
</tr>
</tbody>
</table>
| c. Matching to the standard form pattern, substitute \(a, b, \) and \(c \) into the quadratic equation. \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) | \(a = 2 \)
| c. = 3 | \(b = -8 \)
| c. = 3 | \(c = 3 \)
| d. Simplify | \(x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(2)(3)}}{2(2)} \) |
| The answer is | \(x = 2 \pm \frac{\sqrt{10}}{2} \) or you can write them as separate answers as in 2f |

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Check!!</td>
<td></td>
</tr>
</tbody>
</table>

4. Here is the example used in the Completing the Square directions, redone using the **quadratic formula**: \(2x^2 - 12x = 8x - 38 \)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Write in standard form (ax^2 + bx + c = 0)</td>
<td>(2x^2 - 20x + 38 = 0)</td>
</tr>
<tr>
<td>b. Divide out common numerical factors</td>
<td>(x'^2 - 10x + 19 = 0)</td>
</tr>
</tbody>
</table>
| c. Matching to the standard form pattern, substitute \(a, b, \) and \(c \) into the quadratic equation. \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) | \(a = 1 \)
| c. = 19 | \(b = -10 \)
| c. = 19 | \(c = 19 \)
| d. Simplify | \(x = \frac{-(-10) \pm \sqrt{(-10)^2 - 4(1)(19)}}{2(1)} \) |
| | \(x = \frac{10 \pm \sqrt{100 - 76}}{2} = \frac{10 \pm \sqrt{24}}{2} = \frac{5 \pm 2\sqrt{6}}{2} = 5 \pm \sqrt{6} \) |

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>e. Check!!</td>
<td></td>
</tr>
</tbody>
</table>

And do not quit when the solution gives you an imaginary answer.

\[i^2 = -1 \]

So \(\sqrt{-20} = \sqrt{-4 \cdot 5} = 2i\sqrt{5} \)